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INTRODUCTION

Shapiro (ref 1) states in his introduction that he does not intend to

discuss shape preserving properties of smoothing or iteration of the smoothing

process. These are the topics which will be discussed here.

The basic objective in this report is to take a piecewise polynomial of low

smoothness (having perhaps no derivatives) and replace it with an approximating

function having any desired number of derivatives. One instance in which one

might want to do this arises from computer-aided manufacturing where one might

want to round off corners in piecewise linear geometries. Another instance

arises from analysis of noisy data where one might want to reliably estimate the

second derivative.

We will adhere to the idea of continuous smoothing through integration (as

opposed to discrete smoothing through summation) because it becomes a trivial

matter to interpolate in the smoothed function or any derivative thereof even

for unequally spaced data.

SHAPE PRESERVATION PROPERTIES

Consider the averaging operator S defined by

S{f(x)J = _ -- h f(t)dt = Fl(x)
2h x-h

First, the operator S is obviously linear because

I x+h
S{af(x) + bg(x)) -- f af(t) + bg(t)dt

2h x-h

1 x+h 1 x+h
-a• -- f f(t)dt + b • -- I g(t)dt

2h x-h 2h x-h

= aS{f(x)J + bS{g(x)}

IShapiro, H. S., Smoothing and Approximation of Functions, Van Nostrand Reinhold
Company, New York, 1969.



Second, S preserves 1 and x because

1 x+h t x+h 1
S{(1 1 -- I ldt = -- I = -- (x+h-(x-h)) = 1

2h x-h 2h x-h 2h

and

1 x+h Ita x+h 1
S{xj -- f tdt -- -- I = -- ((x+h)2-(x-h)2)

2h x-h 2h 2 x-h 4h

= -- (x2+2hx+hZ-(xz-2hx+hz)) = x4h

Therefore, S preserves all linear functions because

S{A+Bxj = S{Ao1+B-x} = AS{1j + BS{x} = A+Bx

This is the extent of S's accuracy preserving capabilities, however,

because S does not preserve higher powers of x exactly:

1 x+h 1 t3  x+h 1
SIX = f tdt -- I -- ((x+h) 3 -(x-h) 3 )

2h x-h 2h 3 x-h 6h

1 hz
(x3+3x 2h+3xh2+h3-(x3-3x2h+3xh2 -h3)) = X2 

+ --
6h 3

Although the accuracy preserving ability of S is limited, it does have some nice

shape preserving properties which no form of least squares approximation has. S

For instance, S preserves monotonicity. We can say, for example, that:

If f is monotone increasing on (A,B), then F1 is monotone increasing on

(A+h,B-h). Proof: Assume f is monotone increasing on (A,B), i.e., 0

A < x < y < 8 => f(x) 4 f(y)
(implies)

Let

A+ h <a 4 b <B - h

By definition,

1 a+h 1 b+h
Fl(a) = 2h f(t)dt -- f f(t-(b-a))dt

2h a-h 2h b-h

2
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In the second integral,

b-h 4 t 4 b+h

Therefore

A < a-h 4 b-h 4 t 4 b+h < B

and

A < a-h 4 t - (b-a) 4 a+h 4 b+h < B

We therefore have

A < t - (b-a) < t < B

Since f is monotone increasing on (A,B), we also have

f(t-(b-a)) 4 f(t)

The second integral is therefore bounded above by

1- bh f(t)dt
2h b-h

but this is just Fl(b). We finally conclude that

Fl(a) 4 Fi(b)

and that F1 is monotone increasing on (A+h,B-h).

S also preserves convexity or concavity "away from" inflection points in

the following sense:

If f"(x) exists and is positive for A < x < B, then F'(x) > 0 for A+h < x

< B-h. Proof: Assume f"(x) exists and f"(x) > 0 for A < x < B. Take arbitrary

x in (A+h,B-h). Therefore

x-h > A and x+h < B

Now for x - h 4 t 4 x + h, we have A < t < B and f"(t) > 0. Therefore

x+h

f xh f"(t)dt f'(x+h) - f'(x-h) > 0
x-h

3--. .-.i~,A



But by definition,

1 x+h

Sif(x)} = Fl(x) = -- fxh f(t)dt
2hx-h

Using Leibnitz's rule for differentiating integrals, we have
1

Fj(x) = - (f(x+h)-f(x-h))
2h

and differentiating again, we have

Fl(x) = - (f'(x+h)-f'(x-h))

and

FO(x) >

on (A+h,B-h).

S also preserves positivity in the following sense:

If f(x) > 0 on (A,B), then S{f(x)j > 0 on (A+h,B-h). Proof: Assume f(x) >

0 on (A,B). Take x arbitrary in (A+h,B-h). Therefore x-h > A and x+h < B. Now

if A < x-h 4 t 4 x+h < B, we have f(t) > 0 and also that

x+h
f f(t)dt > 0
x-h

Therefore

Slf(x)} > 0

on (A+h,B-h). A corollary to this theorem is that

f(x) > g(x) on (A,B) => S~f(x)l > S{g(x)j

on (A+h,B-h). (S is a monotone operator.)

Proof: Assume f(x) > g(x) on (A,B). Therefore

f(x) - g(x) > 0 on (A,B)

and

S{f(x) - g(x)} > 0 on (A+h,B-h)

Linearity of S gives us S{f(x)l > S{g(x)j.

4

"NW N



We can summarize the preceding theorems by the form:

If f(x) has property P on (A,B), then S{f(x)l has property P on (A+h,B-h).

If we think of repeating the application of S to f i times (Si), we can easily

prove that

f(x) has P on (A,B)

si{f(x)J has P on (A+ih,B-ih)

These shape preserving properties are important for applications in industrial

computer-aided design and manufacturing, and in data analysis situations when

one or more derivatives must be estimated.

REPEATED AVERAGING

We may apply the smoothing operator S repeatedly in order to obtain

approximations of higher smoothness in the following manner:

1 x+h
S{f(x)} = - f f(t)dt = Fj(x)

2h x-h

Fi+ 1 (x) = S{Fi(x)j i 1 1

In order to carry out this process, we must be able to compute the successive

indefinite integrals of f

fo(x) = f(x)

fi+I(x) = fafi(t)dt i 0

We now compute the first few F's

1 x+h 1
F(x) =2h x-h f(t)dt 2- (fl(x+h)-fl(x-h))

P



F2(x) I x+h Fl(t)dt = I x+h 1 (f(t+h)-fj(t-h))dt
2h x-h 2h x-h 2h

1 x+h x+h
- f (t+h)dt - f f1 (t-h)dt)

(2h)( x-h x-h

= - {ff2 (x+2h) - f2(x) - (f2 (x)-f 2 (x-2h))j

(2h)2

I',

(2h); {f2(x+2h) - 2f2 (x) + f2 (x-2h)}

1 X+h I x+h 1
F3 (x) = -h I F2 (t)dt = 2h fx-h (2h); lf2 (t+2h) - 2f2 (t) + f2 (t-2h)ldt

1 /x+h - 2 fx+h x+h fx~h

(2h) x-h h x-h x-h f(t-h)dt

(2h)3 {f3(x+3h) - f3(x+h) - 2(f3(x+h)-f 3(x-h)) + f3 (x-h) - f3(x-3h)}

1
- ( {f3 (x+3h) - 3f3 (x+h) + 3f3 (x-h) - f3 (x-3h)}

The appearance of the binomial coefficients is fairly evident, and we can

guess the general formula for the ith smooth as
i

Fi(x) = (-)k()fi(x+(i-2k)hj(2h) i

k=O

All we need to do to prove this formula in general (by mathematical induction)

is to be sure that it is true for i = 1, and be able to conclude that it is true

for i+lon the assumption that it is true for i. For i = 1, we have
1

1 3 1 1

F1 (x) = (2h)-- (-1)k(k)fl(x+(1-2k)h) = 2h (fl(x+h)-fj(x-h))

k=O

which we have already shown to be true.

By definition,

1 x+h
Fi~+(X) h-- x- Fi(t)dt

6



Assuming the result for i,

1 x+h 1
Fi+i(x) -- ----- 2 it+(-k 1 ~ d

2hx-h (2h)i -~~
k=O

1 k1  ,x+h

(2h)i~l Lk x-h '

Sk=O

= (2hi+1 ~ (-1)k( 1l)fi+l(x+h+(i-2k)h) - fi+i(x-h+(i-2k)hfl

k=O

Fi+i(x) - (2)i+1 2 )(fi+l(x+(i+1-2k)h) - fi+l(x+(i-1-2k)h)l

k=O

i i

------- { ( 1) ( )fi+l(x+(i+1.2k)h) - ( -,)k( )fi+l(x+(i 1 2k)h)l

k=O k=O

1 
61

(2h)' 2' k

k=O k +(+i12h)-

i +1

-l k-l)fi+(x+(i12(k1) )h) I

k= 1

i 1+1

7- - 1kif+l(x+(i+1-2k)h) + (-,.)k( - )fi~~x(i1-S~)
~h1 'k 1  (ki

k=O k= 1

* At this point we must mention the well-known recursion for the binomial r

coefficients

i~~ (1 (i +1)

* from which we immediately conclude that

I i+1)

by substituting k =0 and i+1 in the recursion.

7



These last two facts enable us to extend the ranges of summation of our two

sums appropriately

i+1

Fi+i(x) = (2h2 (-1)k(.)fi+,(x+(i+1-2k)h)

k=O Si

i+1

+ (-l)k( k)fil(x+(i+1-2k)h)l

k=O

Therefore

i+1

Fi+i(x) = i (-)() + (k l)fi+1(x+(i+1-2k)h)

(2h) i+1 -
k=O
i+11 " P

-------- (-)k( )f i+ (x + (i+ 1- 2k )h )

k=O 5

We have concluded that our general result holds for i+1 if it holds for i, and

the proof is complete.

Having established the validity of the formula for the ith smooth of f,

i

Fi(x) = ( i)k(i)fi(x+(i_2k)h)

k=O

we may trivially obtain the jth derivative of Fi merely by subtracting j from

the subscript of f.

1

Fjij) = 2 (-)k()fi-jx+(i-2k)h).

k=O

If f is not differentiable (and usually it won't be), we must be sure that i .

j.

8'
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Suppose we wanted to estimate the second derivative of f. We would of

course need j = 2. Suppose in addition, we wanted the second derivative to be

smooth to the extent of being differentiable. The lowest value of i that we

could use would depend on the smoothness of f. If f were continuous, then f,

would be differentiable and we would need i = 3 (at least). If f were discon-

tinuous, however, f2 would be differentiable and we would need i = 4.

SMOOTHING ERROR AND CONVERGENCE

In this section, our goal is to obtain a general result describing the con-

vergence of the jth derivative of the ith iterated smooth of a sufficiently

smooth function. The following formula for integration-by-parts will be used a

number of times:

b b b xf f(x)g(x)dx f(b)f g(x)dx - f f'(x)f g(t)dtdx
a a a a

In addition, Leibnitz's rule for differentiating an integral containing a param-

eter will subsequently be used.

d A(x) A()
d (f(t,x)dt = (x) _ f(t,x)dt + f(A(x),x)A'(x)ax a~lx) aIx) ax

- f((x),x)a'(x)

By definition,

= 1 x+h f(t)dt

Letting D be the derivative operator, we have by Leibnitz's rule for differen-

tiating integrals:

DSf(x) = (f(x+h) - f(x-h))

but

Df(x) = f'(x)

9



and

SOf(x) f x+h '(t)dt
x-h

- (f(x+h) - f(x-h))

= OS f(x)

We therefore have commutativity of the S and D operators for differentiable f:

SD = OS

It is easy to show that in general, S1DJ = DJS' for sufficiently smooth f.

The commutativity of the smoothing and derivative operators tells us that

when we apply the smoothing operator to a function, we simultaneously apply the

same operator to all available derivatives of the function. This in turn tells

us that the shape preserving properties of the smoothing operator extend to all

derivatives as well.

Recalling

(j) 1 x+h (j)
Fi+i(x) = -- f Fi (t)dt j ) 02h x-h

we rewrite
(j x (j) fx (j)

2hFj(X) =fX Fi  (t)dt - fx Fi  (t)dt

Using integration-by-parts on these two integrals, we have

(j) (i) x x (j+1) it
2hFi+1 (x) = Fi () x-h dt - fx F 1  (t)f x dudt+1 x- h X_-h x-h

- (JF)(x)fx dt x F F 1  (t)f dudt}1 x+h x+h x+h

hF1  (X) - x-h Fi  (t)(t-x+h)dt

(j) x (j+1)
+ hF1  (x) + xh Fi  (t)(t-x-h)dt

10



Therefore, we get

2h(F p) (x)-F (j (x)) *-fx F 01 (t)(t-x+h)dt + f Fi (tI)(tx d
+1 x-h x+h i ()txhd

Using integration-by-parts again on each integral, we have

Mj J (+)
2h(Fiji(x)-Fi (x)) = -{F~jI (x)fx t-x+h dt

x (j+2) *t 1 (0+1) Ox
-f Fij mt) u-x~h dudtj + Fi (x)j t-x-h dt

x-h x-h x+h

x (j+2) t
-f xhFi (t)f xhu-x-h dudt

x
Wj U~) (j+1) (t-x+h)z

2h(Fi+i(x)..Fi (x)) = -Fi (x)---------
2 x-

t x
f F(j t) (uxha01) (-- I
+ - 2i M ------- dt +Fi Wx)--------

x- ~-h 2 tzx+h

It

x (j+2) (u-x-h)2
-f Fi M(t ---- dt

xh2 u=x+h

h2 (j+l) rx (j+2) (t-x+h)g
z - Fi (x) + f Fi (t) ---------dt

2 ax-h 2

+- i (x) -f Pi (t) 2---- dt
2 x+h2

x (j+2) (t-x+h)2  x+h (j+2) (t-x-h)2
=f Fi Mt)---------dt +f Fi (t) ---------dtx-h 2 x 2

Using the absolute value triangle inequalities (for sums and integrals), we have

2H, Fji+i)(x) -Fi wk) fk- 1  I FI --t---2 dt

x+h (j+2)(t)(t-x-h)2

+ f IF~ 1 1 - - -- -d

x 2.

~ - 9 9. - 9.9.'
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We must now define the following function norm:

gg(x;h) = least upper bound of the set jig(t)I :x-h 4 t 4 x+hi

= max {I g(t)J :x-h 4 t 4 x+hJ

if g is continuous.

Employing this norm, the previous inequality gives us

(j) () (j+2) xx+h
2h Fii(x) Fi (x)l 4 JllFi 4.lx h)(fx (t-x+h)dt + f (t-x-h)2dt)-

(t-x-h)dx-h "x

(j) h3  (-h)3  h3  (j+2)
%IF1 II(x;h)(- 3-) = 3- HF1  II(x;h)

Therefore, we have another preliminary result

(j) (j) h2 (j+2) ,
SFij+l1(x) - Fi (x)i 6- lFi 'l(x;h) I

The special case of i = j = 0 gives us

Slf(x)} - f(x), 4 h2 llf" 1 (x;h)
6

which substantiates our previously obtained result that the smoothing approxima-

tion is exact for all linear functions. Before we proceed to our general

results, however, we need just two more preliminary results. The first norm

theorem is:

If 1fff(x;h) 4 Ilgfl(x;k), then llfll(x;h+I) 4 ggll(x;k+i) where x is arbitrary

and h, k, 1 ) 0. Proof: Assume 1 Hff(x;h) 4 IgIl(x;k). By definition, I

lfl(x;h+I) = max{I f(t)I :x-(h+I) 4 t 4 x+h+I)

= max(IHfll(t;h):x-I 4 t 4 x+11

4 max{llgfl(t;k):x-A 4 t 4 x+11

= maxl g(t)J :x-(k+1) 4 t 4 x+k+Z

= Ngll(x;k+J)



We now follow the first norm theorem with the second norm theorem:

(j) (j)li+lll(x;kh) 4 VIi  ll(x;(k+l)h)

Proof: Since

_(j) 1 fx+h (j)
Fi+1(x) = - h Fi  (t)dt

2hx-h

Taking absolute values and using the norm, we have

(j) 1 fx+h (j)
I FiJ)(x) 4 1 x-h I Fi (t)l dt

2h x-h

1 _(j) (j)
4 !- UFj)Ixhf d Hi

2h i I x h dt=NF (x;h)

but

i+1( F+l1(x;O)

Therefore
(i) (j)

IIFi+llI(x;O) 4 AFi II(x;h)

and using the first norm theorem, we have

(J) (j)
IFi+lll(x;kh) 4 NFi  II(x;(k+l)h)

We are now prepared to establish the main result of the section. Subtracting

and adding the intermediate smooths, we have

(J) (jJ) (j) (U)
F i  (x) - f (x) = F, (x) - Fi-l(X) + Fi-l(x )

_(J) (J) Uj) (M f
- Fi- 2 (x) + Fi- 2 (x) - - F1  (x) + F1  (x) - f (j(x)

Taking absolute values and using the absolute value triangle inequality for

sums, we have

I Fi (x) - f U)(x)I 4 I1 F ) MI I (x) - Fi_ 1 (x )l

(J) (j) (j) _fJ
+ I F,-l(x) - Fi-2(x)l + ... + I F1  (x) - ()

13
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(note that use of the triangle inequality does not make this inequality par-

ticularly strong, since the arguments of the absolute values will tend to have

the same sign), but we have already proved that

(j) (j) h2 (j+2)I Fi1 (x) - F x) (x;h)

Using this fact in the previous sum, we get

(j) h2 (j+2) (j+2) (j+2)

JFi  (x) - f (x)l -- (IlFiI  ll(x;h)+IlFi l(x;h) ...+lf(  I (x;h))

Now, applying the second norm theorem to the first term i-I times, to the second I
term i-2 times etc., we have

IFj() f(j)(i hz = fj2 j2 j2

F~ (x) - f ~(x)I -- (llf(.+2)(x;ih)+Ilf (j+2)l(x;(i-l)h)+...+Ilf (+II(x;h))

Since the first term is obviously the largest, we have our final result for suf-

ficiently smooth f
I(j) f~() iht

JF )(x) 6x) 1 4 "s Ill(j+2)q(x;ih)

This result tells us that the derivatives of the ith smooth converge just as

fast (quadratically in h) as the ith smooth itself. Also, since

qIf(j+2)l(x; ih) 4 IIf(j+2)ll(x;)

and and lf(j+2)n(x;. )

is really independent of x, the convergence of the ith smooth and all its deriv-

atives is uniform. Subsequently, we will discover that this error bound for the

jth derivative of the ith smooth is the best possible (smallest).

14
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HIGHER ACCURACY SMOOTHING

We now show how to obtain formulas of higher accuracy using the repeated

smoothing operator S . Unfortunately, in the process of obtaining higher

accuracy, we must give up the shape preserving properties of our approximations.

Assume in what follows that f(x) is a polynomial of degree n. We know by

definition that

Sff(x)) - FI(x) . _I fx f(t)dt
2h x-h

Expanding f(t) in a Taylor series around x gives us

1 fx+h f(k)(x)

2h x-h k!(t-x)kdt
k=O

n f(k)(x) (t-x)k+i x+h

2h k! k+1 t=x-h
k=O

n f(k)(x
- f x) (hk+ll-h)k+l)

2h L (k+l)!
k=O

n () k+1
1 , f(k)(x)hkk+

2h (k+l)! ( -'
k=O

It is clear that every other element of this sum is zero (k odd). If we let

G(x) be the greatest integer 4 x, we have

f(k) (x)hk
Fl(X) =O,,,.,Gn2Gn2 -

(k+l)!
k=O,2,4, .,2G(n/2)

G (n/2)
- f(2k)(x)h 2k

(2k+l)!
k=O



Letting

m G(-)
2

and
h2k

=----------
(2k+1) !

where the superscripts on the C's denote the smooth index, we have

m

F1 (x) = Cf(2k)(x)

k=O

Since F1 is also a polynomial of degree n, as well as all successive F's, we can

write

m

Fi(x) = XCf~x)

k=O

and m m

Fi+i(x) = Ck~ fdx) ~ =

k=O j=0

but m-j m

(2j) ' i f(2k+2j) = (2k)
F (x)= 2Ck x Ck X)

k=O k=j

Therefore

Mm
i~j 2k i(2k)

Fi+= 2 c3 2 Ckjfx)

k=O j=o k=j

m m
, i (2k)L L jCk-jf x )

j=O k=j

16
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Carefully interchanging the order of summation in this double sum, we have

m m k
i+Y k)Ci j2k)

F= ) =(x) = X) j k

k=O k=O j=O

m k

k0 jk-j
k=O j =o

We therefore conclude that

k
= CjCk..j

j=0

We have
ci+l

i~ ~ i

o =CoCo ''

i +1 1 i ,
C = CC 1 + ClC o

2 = CoC2 + CC + C2Co

i+l " i Ii Ii
Cm = CoCm + C1Cm-1 + ... + CmCo

So if we define the semi-convolution product of vectors a and b as

aeb = (ao,al,a2,...am) * (bo,bl,b2 .... bm)

= (aobo,aob1 + albo,aob2+albl+a 2bo...

aob m + albm_1 + ... + ambo)

we can write Ci+1 = C.C i, where removal of the subscript denotes a vector.

We use the term "semi-convolution" because the dimensionality of the prod-
i

uct is the same as that of the factors. Also note that Co = 1 for all i.

17



Let us now derive an approximating operator which is exact for cubics. Let

f(x) be a cubic polynomial (n=3). Thus, we have m = 1. We can write the

following two equations and subsequently eliminate f"(x):

Fi(x) = f(x) + Cif"(x)

Fi+l(x) = f(x) + C1 f(x)

But first,
C i ~l  1+ 1

= 11,C~ j) = CI.Ci
I{

= (1,Cj).(1,Cj)

i +C
- (t,Cl+C1)

Therefore

i+1 ci
C1  = 1 +C1

or

i+1 i.

C1  - 1 =C

Summing both sides of this equation, we have

k k

S(C ij- C1) = c

i=I i=1

c - c = C kC

Ck+ (k+1)C'
p.

Therefore

C ic

We have

Fi(x) = f(x) + iC'f"(x)

and

Fi+ 1 (x) =f(x) + (i+1)C'f"(x)



Eliminating f"(x)

i+1 i+1Fi+i(x) i Fi(x) = f(x) i f(x)

iFi+l(x) - (i+l)Fi(x) = if(x) - (i+l)f(x)

Therefore

f(x) = (i+l)Fi(x) - iFi+i(x)

=(+)i i+1= (i+1)sif(x) - is f(x)

and we have a smoothing operator which is exact for all cubic polynomials

s3 = (i+l)Si -iS

We will now obtain an operator which is exact for all quintic polynomials.

Since n = 5,. = 2, and we write

f(x)+i 4Fi(x) = f(x) + CIf"(x) + C2f x)

We simply eliminate f"(x) and fx from these equations, leaving f(x) defined in

terms of the three smooths. First, however, we get the formulas for the C's.

' 1'

i+ x = ( , i++)i=1Ci+C

JC 1  f")()C + C2 ) R~

Fi+2( C" C f "+2i+2

Therefore

~~and ,

iC+1 il i I2 C 2 1 1 +2C

i 1 i

Cl =C 1 +Cj



As before,

C iCj

but

i+1 iC2  - C2  i(Cj)2 + C2

Summing both sides, we have

k k k

SC2~ C2 (C1) i + C2
i-i izi i=i 1

k+1 - = (C')2 + kC'k+1 kk+kC
c2 C2 2l 1 2 - c)

C2 + k(k+) (C')2 + (k+l)C'=2 2

Therefore

C - - -  (C)2 + iC"

Using these C's to eliminate f"(x) and f x ultimately gives us

f(x) = %((i+l)(i+2)Fi(x) - 2i(i+2)Fi+l(x) + i(i+l)Fi+ 2 (x))

Our smoothing operator which preserves quintics is therefore

s5 = i((i+l)(i+2)S
i - 2i(i+2)S i+  + i(i+l)S i+ 2 )

Using s3 and s. as examples, we can guess that the operator

k
i+k) ksi+jS2k+1 = i(ik) ()k i

j=O i

is exact for all polynomials of degree 2k+l and has O(h2k+2) error. It is

interesting to note that these s operators are generalizations of Tukey's (ref

2) method of twicing. Tukey uses the notation, data = smooth + rough, which we

2Tukey, J. W., Exploratory Data Analysis, Addison-Wesley, New York, 1977.
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will abbreviate as d = m + r. He then defines the first smooth as m, = Sd, and

subsequent iterated smooths by mi+, = mi + Sri , where ri = d - mi . Eliminating

ri , we get mi+, = Sd + mi - Smi. For twicing, we have

m2 = Sd + m1 - Sm1

= Sd + Sd - S2d

= (2S-S 2 )d

For thricing, we have

m3 = Sd + m2 - Sm2

= Sd + (2S-S 2 )d - S(2S-Sa)d

= (S+2S-St-2S2+S3)d

= (3S-3SZ+S3)d

The twicing and thricing operators are the same as s3 and s5 with i = 1.

Note, however, that we have made use of the linearity of our smoothing operator

S, while Tukey (ref 2) does not restrict himself to linear operators.

KERNEL FORM

We can easily write the first smooth in kernel form

x+h1
Sif(x)l = fxh - f(t)dt = f_0K 1 (t-x)f(t)dt

x-h 2h -00

where
1"

K2(t) = [ -h 4 t 4 h
) 0 elsewhere

We will generalize this form to i successive smooths and find Ki(t) where

sijf(x)} = f. Ki(t-x)f(t)dt

We will need the following simple theorem regarding successive integrations of f:

2Tukey, J. W., Exploratory Data Analysis, Addision-Wesley, New York, 1977.

21



x f (x-t)'- 1

fi(x) f(t) ( ) dt
aD

We prove this theorem by mathematical induction.

By definition,

fl(x) = x f(t)dt
a

hence, our formula is true for i = 1. Also by definition,

x
fi+ix) = a fi(u)du

On the assumption that our formula is true for i, we have

fi~lX)  u (u-t) i- 1

f=+i(x) z f f f(t) dtdu
a a (i-1)!

Interchanging the order of integration gives us

fx fx (u-t) i -

fi+(X) = f(t) dudt
a t (i-1)! P

ff(t) lyLi u=x
a u=t

= J f(t) in n , dt

a

Hence, our formula is true for i+1 also, and the theorem is proved.

Now, we have already proved that

i .

S f(x) = (2h )fi(x+(i-2k)h)

k=O

22
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Therefore

S1 f(x) k f ~ X+ (i-2k)h f(t) i1dt

kO(2h)' k a

k=O

ii

f )(x+(i-fk'h-tki(lt )dt

kk=O
iI

where

gk(t) = ----- ( k)(x+(i-2k)h-t)i-lf(t)

We may specify a arbitrarily, as long as it is independent of k. Let a =x-

ih, hence

i

S f(x)= gk(t)dt
x- ih

k=O

i-i
x (i-2k)h

f x+i gk(t)dt

k=O

-i

f(-2k)h
S'fx) 2 -ih Gk(tx)dt

k=O

where Gk(t) =gk(t+x).

23 "
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Writing out some of the terms of this sum, we have

S'f(x) =f ihG 0(t)dt + f (i2hGI(t)dt + f (i4) 2 (t)dt-ih -ih -ih

+ f (i6hG3 (t)dt + .. + f i-) iItd
-ih -ih

Rewriting this sum as a sum of integrals over disjoint ranges, we have

Sif(x) ih G0o(t)dt + f (i2hG0 (t) + GI(t)dt
(i-2)h (i-4)h

+ f (i4hGO(t) + Gl(t) + G2 (t)dt
(i-6)h

-(i-2)h
+ + f -ih G0 (t) + G1(t) + .. + Gi-..(t)dt

Hence iik

I(i-2k)h
Si f(x) = (i2k1)) Gj(t)dt

k=O (-(l)hj=O

i-i k

f (i-2k )h jtxd
= (i-2(k+l))h2 (txd

k=O j=O

i-i k

= 5f~,I, (-) ((i-2j)h-t)i'lf(t+x)dt
* ~~~(i-2(k+l))h (2)(-)

k=O j=0

i-i k

f (1-2k)h f(t+x) S (-l)j(')((i-2j)h-t)i-ldt
(i-2(k+l))h (2h)'(i-l)! /

k=O j.0

but we want

Si f(X) I= f h Ki(t-x)f(t)dt
x-i h

ih
- i Ki(t)f(t+x)dt

24



We can therefore conclude that for 0 4 k 4 i-1 and (i-2(k+l))h 4 t 4 (i-2k)h,

k

Ki(t) = - I (_l ) ((i - 1(2h) i(i-l) !  L ) i-j h )

j-0

We see that Ki is a piecewise polynomial of degree i-1. In fact, Ki is a B-

spline (ref 3) area normalized to unity with constant mesh spacing 2h.

Note that for k = 0 ((i-2)h 4 t 4 ih),

Ki(t) oc (ih-t)i-I

Hence

and

K i~h) = 0 for j 4 i-2

ERROR ANALYSIS WITH NOISE

Let Di denote the taking of the jth derivative with respect to x, and If

denote the piecewise linear approximation to f over a uniform mesh with mesh

width T. The error in our estimate of the jth derivative of f is given by

ej(x) = f(J)lx) - DJSiI(f+c)(x)

where, in order to compute our estimate of f(J), we take the sum of the

underlying function f and noise e, evaluate this over a discrete mesh (take

data), define a piecewise linear approximation to the data, smooth the approxi-

mation, and take the jth derivative of the smooth.

We may rewrite ej(x) in the following manner:

ej(x) = f(j)lx) - D3SilIf(x)+Ie(x))

= f(J)(x) - DJS'if(x) - DoSie(x)

3de Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
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but

DoSif(x) = DjS(f(x)-f(x)+f(x)) = DjS'f(x) - DjS'(f(x)-if(xf)

Therefore

ej(x) = f(3)(x) - DjS'f(x) + 0jS'(f(x)-lf(x)) - DjS'ic(x)

The first two terms denote the component of error due to smoothing alone. Tne

next term denotes the component of error due to linear interpolation of f, and

the last term denotes the component of error due to noise, i.e., the stochastic

component. We denote the first three terms by A(x), the analytic or deter-

ministic component, and the last term by R(x), the random or stochastic com-

ponent.

Thus, we can abbreviate

ejlx) = A(x) - R(x)

We also let Ea, Eq, and V denote the arithmetic mean, quadratic mean, and

variance operators, respectively.

By definition, the local quadratic mean error is given by

Eq(ej(x)) = (Ea(ej(x)2))3 = qj(x) %!

Therefore

qj(x)2 = Ea(A(x)2-2A(x)R(x)+R(x)2 ) = A(x)- 2A(x)Ea(R(x)) + Ea(R(x)2 )

but

R(x) = DJS'ilc(x)

x+ih'

= 0 f Ki(t-x)ic(t)dt
x-ih

x+ih " (t - x )i t )d t
x- ih "lJi"

(i)

(using Leibnitz's rule and the fact that Ki (±ih) = 0 for j 4 i-2).
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Approximating the integral by a sum over the sampled data we get:

R(x) - (-1)J 2 Ki (tk-x)c(tk)T

k

The expected value of this sum is clearly zero, and using elementary

statistical theory for the variance of a linear combination of independent ran-

dom variables gives us

V(R(x)) ~ Ki )(tk-x)2aTZra z a2T K{'(tk-x)2T

k k

Re-approximating the sum by an integral, we have

V(R(x)) - OaT fx-ih K, (t-x)zdt = a 2T f ihK( (t)2dt
x-ih - Kih (

This approximation will be good for T small relative to h.

Since Ea(R(x)) = 0, Ea(R(x)2 ) = V(R(X)), and we have

qj(x)a = A(x)2 + V(R(x))

where

V(R(x)) - aT h Ki (t)'dt
-ih

and a2 is the variance of the noise.

Now

A(x) = f(J)(x) - DjS'f(x) + DJS'(f(x)-if(x))

and taking absolute values gives

I A(x)I I f(J)(x) - DiSif(x) + lDJS'(f(x)-if(x))l

The previously obtained bound on the first term is given by N

ih2

IflJ)(x) -DJs f(x)1 - IIf(J 2 )l(x;ih)6
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We now obtain a bound on the linear interpolation part

DiS'(f' )-ifxI = ID x+ih K~-)ft-ft)t

-ih

x+ih (j) x+ih ()
If K, (t-x)(f(t)-Jft))dt f xih K, )(t-x)JI f(t) -If(t)l dt

but from elementary interpolation theory, we know that

So
,Dji~(XIfX)14T 2 fx+ih ()
I ~ ~ ~ ~ -0Sfx)fx)I ' I K1 j (t-x)j fIl tTd

8~ ~ ~ (t) l"1(;T

4 TI"I(xih.T ) fxi jK1 )(t-x)Idt = T2 R"u(x;ih+T) f i IK9)tdt

and we have approximate bounds on the local quadratic mean error in our estimate

of the jth derivative of f:

qjxa4iha f(+)l ~h T2 fUxia~ ih IU()IdI
qjx2~ 6 8- -ih

8 a8TfxihT~ ih KK Mt) dtj
-ih (j

Let 
i

I I 1Kj (t)I dtf-ih 1

and
ih (j)

j f- f K1  (t)2dt

and approximate

lf~+211 x~ h) If f (2 x)I +ihI f j3 X)I

If"I(x;ih+T) I f"(X)l + (ih+T)I fill (x)I

28



rax!

We therefore have the approximate local bound

ih2 (j+2) (j+3)
qj(x)a < I--- (I f (x) + ih f(x) I)

6

T"I
+ --- (I f"(x)l + (ih+T)l f"'(x) )1 + a 2 TJ

8

and the approximate global bound

1 L 1 L ih ( j+2), j+3),

q = fO qj(x)2dx < - f(I f(x) I+ ih flx)

T2 1I
+ --- (I f"(x)l + (ih+r)l f"'(x)I )Izdx + a2 TJ

8

At this point, we will consider the problem of estimating I and J (at least

for j = 0,1,2). Obviously, we do not want to go to the trouble of evaluating

t4the integrals of squares or absolute values of derivatives of higher order B ,

splines, so we will do an asymptotic development. First, we note that the B

spline kernel functions (Ki) appear in an entirely different context - namely in

the statistical theory of obtaining probability distributions of sums of inde-

pendent, uniformly distributed random variables (ref 4). If x1 , X2,...xi have

K1 as their common probability density and we define Yi by

1

Yi = Xk

k=1

then yi will have Ki as its probability density.

We can easily compute the variance of Yi

i

V(yi) = i= V(xk) = iV(x)

k=1

4Cramer, H., Mathematical Methods of Statistics, Princeton University Press,
New Jersey, 1946.
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but x has density K1 , therefore Ea(x) = 0, and

h x2 x3  h hz
V(x) = Ea(x 2) =f -h 2h dx = I hl --h 3

We then have

ih9ai2  = -

3

We now bring to bear the central limit theorem of statistics, which tells

us that the probability distribution of yi will approach the normal distribution

as i becomes large. In practice, this normality approximation is rather good,

even for small i. We can therefore write

Ki~) - 1-- e. j(t/ai )2
Ki(t) 1

for large i. First, we need a couple of derivatives of Ki:

Ki(t) - Ki(t)

o'i2

and

1 tl;(t) = -- ( -p-~ i t

ia i

The incomplete gamma function is defined by

X

y(a,x) = ta-le-tdt
0

We will subsequently need a recursion formula for y. Using integration-by-

parts, we get
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1(a~~~~x)~ xa-- x .-.-fx(.lt-2te-dd

x t
(a- o xaje-tdt f (ai)ta-2 -e u dt

0 0 0

z xa-i(i-e-x) -fx (a-i)ta-2(i-e-t)dt
0

= xa-i(i-e-x) - fx (a-i)ta-2dt + fx (a-i)ta-2e-tdt
0 0 .

= xa-i(i-e-x) - (a-1) t-- Ix + (a-i) fx ta- 2e-tdt
a-i 0 0

=xa-i(i-e-x) - xa-i + (a-i)yt(a-i,x)

Therefore

I(a,x) -xaie-x + (a-i)y(a-i,x)

We also have the ordinary gamma function

r(a) - yt(a,oo)

and its recursion

r(a) = (a-i)r(a-i)

Taking j 0, we have

I foo I Ki(t)I dt =fo Ki (t)dt 1 10

J f Ki(t)2dt =f ----- e dt

-co i7a i

f e------Ctydt = f e 2 dt
--a 21rirc 27wai

- - - - e-% U L - - - - - 421 00

27raiV'i 27aY-2Y

I'

21- aI
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but

i ~h

Therefore

1 3% JO
------------- --------
26 i~h i~h

where

Jo 37

Taking j =1, we have

I~ K ~(t)l dt f go I 1lI-t C-4(t/ai )2d
__; Ki(t)dt fed

cca -00 j

=4 2f----- -(t/i)2dt =2f----t--t'adto a 3/27 0 a3V27j

2 0 1 __ 3% iI
~e-ltal -- 12 /71 a-- V27

O'.j7 0 a i~h i 3h

where

J Ufo K' (t)2dt t2 f0 t.- -((ttdt ir
-~i i4O4 c 27iroj 2

o a 7 2t 2  1 -~ad 1 0 cc -t
-co ayi

4  27rai 2

=------------- f0  t~e-lit 2dt
27ra.,3  2r2Yr-7 -OD

1 1 3 3/2 J

S4V 7 /2h3 i /h3

where

Ji=- Y3 /7r 
V

4
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Finally, taking j =2, we have

I I Ki (t)j dt fmI I (t-)' 11i Ki (t)dt

CO1 t 2 W -3(t/a 1 1
=2f 0 iI ( al2- --- e i)dt 2 f 0 iI V~-11-----e~to

= .L 2/1 f~ Yr2et~t= - (f (1-t2)e-3It2dt + f~ (tz-I)e-tVdtI
aio aia 0 1

Making the change of variable

u

t (2u)3i

dt = %(2u)-%2du = (2u)-fidu

I =--- )2 -/r f1  (1-2u)e-u(2u)-3du + fo (2u-1)e-u(2u)-36du)
ri 2  0 3

1 1 V12 /wrU ((2u)-3 - (2u)31)e-udu + fo ((2u)% - (2u)-%)e-udul
ail 0 3

r'2I7r 2-V,)-2~'(I,)+2(r/)-(/,) -%(( - %,j)

=--V2/w{(2%y(3j,3j) - 2 3/2y(3/2,3j) + 23ir(3/a) - 2%()
ail

'2- r2Iw ty(3j,3j) -23(()e 
3 (,J) + 2% * ro - -r3l

ai 2

1 '2_ 3 __ 12

alalih2 ihz

where

12 6 6)2/wre
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Now

=f Ki"(t),?dt =f -- ((--) 2-1)2Ki(t)2dt

a i 1

ai4  ai27rai 2

=f' --- (ta-W) *-------t'ad

= -- f (tz-1)2e-tadt
Yra~ a

Making the change of variable

t2 = u

t = L36

dt = %u-4du

j (u-1)2e-u *--- ---- f u-4(uz-2u+l)e-udu
'a 027rai s 0

21rais 0

Therefore

1 4,

J-----(r(s,) -2r(3/2) + row-(3/2.% r(m-2.J4r().r3w
27ri, 27rais

but

Therefore

1 3 3 35/2 J2S. 3/4v; CI z-- ---

where

27
J -- v'3/ir

8
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Summarizing these results fcr I and J, we have

I = Ij

(h/iT)J

Io0= , I 1 -A7, 12 = 62/re

jj

(h V'T)2j+
1

27
Jo %V37, J1  3/4V3/7r ,J -- r /"8

Our approximate global bound on qj becomes

1 L ih 2  (j+2) (j+3)
qJi f --- (If(x) I+ ih0f(x)

-L o 6

TZIj OaTJj
8 (h--)-- (I f"(x)l + (ih+T)l f"'(xit ) dx + (V) 2
8(hV'i) J (hri) 2j + 1  .

Note that all terms in the preceding bound either remain finite or - 0 as T

0. Also note that for a given T, some terms - oo as h - 0. What we would now

like to do is to select an h (in terms of T) which roughly minimizes this bound.

We would then like all terms in the bound to - 0 as T (and h) - 0. 5=,

Since we only need an h that roughly minimizes the bound, we can freely

neglect small terms. We can begin by neglecting the f(j+ 3 ) and f"' terms as h,

T -.0. We then have

ih2  (j+2) TIj aZTJj
qj2  < - -- If(x) I + I f"(x)j 8 )dx +(h'-J L o 8(hi)J (h t)2j+l

i'h4  ih2T2Ij T4,Ij 2  O2TJj
-- llJ+2,J+2 +- ------- 2,j+2 + ------ 2,2 +-------------
36 24(hri) J  64 (hliT) 2j (hiT) 2j+ 1

where

#j 1 f L I f jif Hld.
Mli'J = j 0
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Therefore r

1 1 il~J/2 h 2 _JT~zaI 2
q 36 ih'gj+2 'j

+
2 + 24- 2,j+2

+ - T4h-2ji + h i - % TJj
64 2

= aih4 + a2 h2-jT2 + a3h-T4 + a4h-(
2J+l)T

where

I
a, =36 i j+2,j+2

1 1-j/2 
j

a 2 = 24--1i j2,j+2

a3 = 64 i-JIjaA 2 ,2

(j+3j) a
a4 = i-(J 2)Jj

Differentiating this bound with respect to h and setting the result equal to

zero gives

4alh3 + (2-j)a 2 h-JT2 - 2ja 3 h-(
2j+1)T4 - (2j+l)a4h-(2j+2) = 0

Multiplying through by h2 j+2 gives

4alh 2 j+5 + (2-j)a 2 hj+
3 TZ - 2ja 3 hT' - (2j+l)a 4T = 0

Clearly, h = 0 if T = 0, but we would like an h in terms of small but finite T.

It seems that as far as T is concerned, we should be able to neglect the a2 and

a3 terms of the last equation. We will now do this and subsequently show that

it is justified. Neglecting the second and third terms gives us

4alh 2 j+5 - (2j+l)a 4T = 0

Therefore 1 1

(2j+ l )a4  )2 j+ 5  = 2 j + 5

h = ------ TC
4a,

3.6



where 1 1
(112(~)a4)2j+5 (2j+l) i-0 + )0 2J+5-- - -= . . . .= (. .......1 ) 2 5

4a1  1/9 iauj+2,j+2

1 1
9(2j+l)o2JI_) 1 9(2j+l)a 2J +5- -

- -- - - - --... ... a_)..). = __ (..........-----

ij+'/21j+Z'j+ 2  Jj+2,j+2 '

Inserting the value for h back into the equation in which we neglected the

second and third terms gives us

j+3 1

4alc 2j+5T + (2_j)a 2Tacj+
3T 2j+5 - 2ja 3TrCT 2j+5 - (2j+l)a 4T = 0

or 5j+13 8j+21

4alc 2j+5T + (2-j)a 2cJ+
3T 2j+5 - 2ja 3cT 2j+5 - (2j+l)a4T = 0

and we see that indeed, the a2 and a3 terms are asymptotically smaller (as T -

0) than the two terms retained (the a1 and a4 terms). Also, for j = 0, the a3

term is zero and for j = 2, the a2 term is zero.

We now insert our (roughly) optimal value for h into our previous bound

expression. The bound is

qja < ajh' + a2h
2-jT2 + a3h-2jT4 + a4h-(

2j+l)T

4 2-j -2j -2j-1

ajc4 T 2j+5 + a2Tac2 _jT 2j5 + a3TC_2jT 2r+5 + a4TC_( 2j+i)T 2j+S

4 3j+12 6j+20 4
aj4 jS+ac-j• 2j+5 +~- 2jT2j+5 + a4C_(2j+I)T 2j+5 !

alc'T 2j+5 + a2C2_i
3  +a c -.

It is interesting to simplify the coefficients of the powers of T in this last

bound and note that they are completely independent of i (the amount of

smoothing).

Let 1
9(2j+l)a2J3) 2 ---

J 2j+5 '
k =--------------

j+2,j+2

37



therefore c = ki-%.

Now

aleC = -- i''j+2,j+2 k4i- = -- Kj+2,j+2
36 36

a2c2j 1 i1-j/2 j+ 2-ji-j(2-j) = 1 i 2-j

24 2,24 2,j+2

a3c- = ijIj22, " k-2ji-3(-2J) = ijZk_2J,
64 22642,

a4c- (2j+)l)k(2j+l) oJjk- (2j+ 1 ) I

Our roughly optimal asymptotic error bound is

4 3j+12

q 8 <12j+5 1•
qjs < - k4pJ+2,j

+ 2T -- jk2-J2,j+2.r2j
+636 24

6j+20 4

1
+ --

64 Ik2 2 2T
2 J 5  + Jjk(2j+)T

Clearly, the second and third terms play a minor role as far as T is concerned.

We can therefore further simplify:

4

qj < 1 k4 j.+2,j+2 + a2Jjk-(2J+))T2j*5

-36

Since
1

(9(2j+l)a=JJ ----

Jj+2,j+2
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we have

42j+1 4
19(2i+l)o'Jj 3; 9(2j+l)ea~j - - --

qj <- 9'L+2,j+2( -----------)J+ +---------------------- 5 2jT 5
g.j+2,j+2 IAj+2,j42

2j+1 4 4 2j+l 2j+1

36~ gj+ 2,j+ 2 j+5(9(2j+1)aTJ~j)2 + (aZTJj) 2j+5ll+ 2 j+ 2 2+ (9(2j+1)) 2+

2j+1 4

g j+2,j+2 1j5((jlCRTj2+(
36 9(2j+1)

Therefore 2j+1 4

1 2j+5 --

qj2 < - (-')l+,+ j5((jlaTj2+

Recalling the expression for our nearly optical h value

1

1 - 9(2i+l)OTJ- ---

and defining the constants

Mj= (9(2j41)Jj)2j +5

and2

1 2j+5 2+

Nj 6 2j+1 S.....~lJj

we summarize 'S

M. O'T 2j+5

v'T I.j+2,j+2

2j+1 2

qj < ji2,2 aT

where M4O 1.345, M1  1.53, M2 = 1.74, and No = 0.674, N1I 0.597, and N2 =

0.679. Note that q. 0, h. 0, and h./T - o as T - 0.
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We now apply these two formulas to the particular case of a sinusoidal

function

f(t) = A sin wt

First, we can easily compute that
A =w 2j+4 %,

g j + 2 ,j + 2 -- - -
2

We then have 2j+ 4 2j+1 2

A2W(j ---
qj < Nj( ------- )

4j+ 0 (aT) 2j+5

If we now define the error-to-noise ratio e to be qj/a and the signal-to-

noise ratio s to be A/a, we get

0.S~a2j+4 2j+1 2

qj< Ni( 2 ) 4 j+10(a2T)2j+5

4j+2 4 2j+1 2

=N- 4j+ 1
0  2j+5( .-- -- ) 4j+10T2j+5

2

Therefore 2j+1 2

e < Nj(S----+4-4j~lOT
2j+S

-2

To insure that e is bounded above by some specified number E, it is sufficient

that 2j+1 22 ' 2j+4 4 ----O ---

Nj 2 -j 5 =E

or 2j+5 2j+1

T 2 (-- -- --- ---- 4

but 1 1
M T 5 M j 2T )+ Mj 2T 2j+5hj = 1- : - - 2 +  = -- (= -- ------; ) .

r" 1j+2,j+2 If? A2w 2J* 4  7 "2 4

2
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Inserting the previously computed value Of T into this expression for hj gives

2j+5 2j+1 1

hj2 1 E 2 2j4

ri s w2j.4'Nj1  saw2j+

2j+5 2j+5 I
Mj 2 4  E )2+5 =j 2 E_ j

-- ((----------)
Y' 51w2j+4 N1  s aw2j 4 N1

Therefore

E (2
(-)PisN3  w2j+4

For a sinusoidal function, we may therefore estimate the needed sampling

interval T and window parameter h, given the desired error-to-noise ratio E, the

signal-to-noise ratio s, the amount of smoothing i, the frequency w, and the

derivative index, j.

ERROR ANALYSIS WITHOUT NOISE

Recall from the last section that the approximate asymptotic error bound on v

the global error is given by

qjt < ajh4 + a2h
2 JT2 + a3h -2jT + a4h(2j+l )T

and that setting the derivative of this bound with respect to h equal to zero

yields (implicitly) the optimal window parameter

4ajh3 + (2-j)a 2h
1-JT- 2ja3h-(2J+l)T4 - (2j+l)a4h-(

2j+2 )T = 0

where 1
a, 36 i-ij+2,j+2

a2 = -- 2.1-J/2

a2 24 1 jI2, j+224 4'
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a3 = - i j- jaI2,2

a4 = i-(j+%)oa2j

In the presence of noise, the a1 and a4 terms turned out to be the most

significant, but without noise, the a4 term is zero and we are left with

4ajh3 + (2-j)a 2hlJT2 - 2ja3h-(2j+
1 )T 4  0

If j = 0, we have

4alh3 + 2a2hT2 = 0

and we see that there is no real optimal h.

If j = 1, we have

4ajh3 + a2T
2 - 2a3h-

3 T 4 = 0

or

4ajh' + a2Tah
3 - 2a3

T4 = 0

There are no dominant terms in this equation, so we may not neglect any.

Solving this quadratic for h3 gives

h3 = --- (-a2  + (a2 2+32ala3)%l
8a1

If j = 2, we have

4ajh3 - 4a3h-IT4 = 0

or

a1h8 = a3T 4

Therefore
a3 1/0

h =(--) T
al

Inserting the expressions for the a's gives

16914,4
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a n d 1
12 "

q2 2 < -- (J12,4+(A2,2P4,4)%)T2

~24

We see that even without noise, there are optimal window parameters and

corresponding error bounds for derivatives.

BEST ANALYTIC ERROR BOUND

In this section, we show that the previously obtained upper bound on the

analytic error in the jth derivative of the ith smooth of a smooth function is

the best possible, i.e., the smallest. We will streamline the error analysis by

making use of the kernel functions and their properties

DJS'f(x) = SiD3 fx, = Sf Ki(t-x)f(t)dt

ih (j) o (j) 0 (j)
f Ki(t)f(t+x)dt =i Ki(t)f(t+x)dt - f Ki(t)f(t+x)dt-ih -ih ih

Using integration-by-parts, we have

DJSif(x) - f (x)f - f0 f(J+l)(t+x)ft Ki(u)dudt
-ih -ih -ih

- (f(j)(x)f Ki(t)dt - 0 1 f(Jl)(t+x)f Ki(u)dudt)
ih ih ih

Let, t

I(t) f f Ki(u)duI~t) -ih

Therefore

r• Xjj Ki(t)dt - f fl+l)(t+x)I(t)dt
-ih -ih

+ f f(j+l)(t+x)(l(t)_llih))d t
ih
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Then
1*1 0 (i+1) fO f~+1jIt)1d

OjSlf(x) - = f, f(4+x)I(t)dt + of It)ld
-ih ih

IN
Again, integrating-by-parts,

Dx'fx x)=- I't'dt -- f4x, I(u)dudtl
-j'~)f 4'oih f-ih -WWih

(j+1)00442f
+fx) f (IMt-1)dIt - f0 +4Xf (I(u)-1)dudt K

ih ih ih

(j+) 0 ih 0 (~j+2) t I
f~x{-f I~tdt f (1-I(t))dt) + f ft+xf I(u)dudt

0h +2 h

+ fi 44 fh (1-I(u))dudt
0 t

Now

1(t) =ft. Ki(u)du
-ih

therefore

I(-t) = Ki(u)du =-f~ Ki(-u)du
-ih ih

=f ihKi(u)du = I(ih) I (t) I (t)
t

Therefore

f X)lff Itdt + f ih I(tptDSfx- M=f f- ih 0 I-~t

0 f +2 ft I~~ut~ ih f 2 fihI(uut
+f-ih +X -ih Iudit+f0 +Xft (udt

(j+1) 0 0 0 (j+24t
=fX) {f I(t)dt + f I(t)tj+f ftxf Iudt

(-ih -ih d +f-ih +X-ih Iud

ih (j+2)f-t
+fft+xf I(u)dudt
0 -ih
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but
ih fk2ft- ih i2

f 0 X -hI(u)dudt f 0 f h txf ih I(u)dudt

o f-ih 0- -ih ~~dd

We thus have
o t

Disi~x)- fi)() f-ih f(j+2)(t+x)f -ih I(u)dudt

+ f0  f~j+ 2 )(x-t)f I(u)dudt
-ih -ih

Taking absolute values and using the usual norm, we get

I DjS'f(x) - f~-i)(x)j( 24 fj2Vx hf 1 (u)dudt

-2IffUZ2)N(x;jh)f 0 f t fu Ki(s)dsdudt
-ih -ih -ih

By reversing the order of integration in the triple integral a couple o~f times,

we get
0 t u S

f-ih fU i Ki(s)dsdudt f '-ih 2 - Ki(s)ds

ih 'aiz ih2
f s2Ki(s)d-------- ---

-ih 4 12

We finally get

Di~f() -f~)(xl (jN+~2 ) iha ih2  :(ji2)
EI Sf() fU xl421 I (x;ih) -- = -- f Ili+2)0  i

and we see that no better bound is possible.

45



_ -- - F f..o .

A COMPUTATIONAL CONSIDERATION

To repeat, the ith smooth of function f is given by

i

Si f(x)---------O (-1)k(k)fi(x+(i-2k)h)

where

u (u-t i-1

fi(u)= f(t) dtfiu a (i-i)!.'

Now, for a given value of x, a is arbitrary, but if u is considerably different

from a, the integral fi(u) can be quite large. This can lead to a major loss of

significance through round-off error in the smoothing sum. To avoid this, we

prevent fi(u) from becoming too large by selecting a equal to x. -J

Hence, we compute

fi(u) f I i(t)dtx

where
(u-t)i-I (N

¢~~i(t) f(t) (-)

Now, assume f(t) to be defined piecewise on some x mesh. Let xi 4 x 4 x1 +1 and

xm 4 u 4 Xm+1 where 1 4 m,

x
(if I > m, fi(u) = $i(t)dt)

u~U%

if m = 1, fi(u) f x*i(t)dt

X +l u
if m = 1+1, fi(u) =f Oi(t)dt + I Oi(t)dt

x X+
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if mn 1+2,

fi(u) f Ij~ (0i(t)dt + IX+ * 1i(t)dt
x x 1 i-

+ + fm O td + ,u Oi(t)dt

rn-1
=O IM11  itdt + f *i(t)dt + fu pi(t)dt
x x Xm

We therefore need to compute integrals of the form

f a (O(t)dt where xp 4 a,p 4 Xp+i

In the special case when f(t) is piecewise linear and continuous, we have

t -x
f(t) =Yp +-------- (yp+ - Yp) for xp 4 t 4 Xp+1

pi -Xp

or

f~t M Yp + qp (t-x'p)

where

1P Yp+i Yp

Xp+ 1 - Xp

Theref ore

(Uti-i
Oit (Yp + qp(t-xp)) ~u

and

(U-t)i
a ,td (Vp +qp(t-u+u-xp)) ii! d
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IL

Oi~~dt (yp + qp(u-xp)) (Ut i-id%

f *jItldt f (- f utd

U-X2

((- (u'- (ua)
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